Methylmercury induces pancreatic beta-cell apoptosis and dysfunction.

نویسندگان

  • Ya Wen Chen
  • Chun Fa Huang
  • Keh Sung Tsai
  • Rong Sen Yang
  • Cheng Chieh Yen
  • Ching Yao Yang
  • Shoei Yn Lin-Shiau
  • Shing Hwa Liu
چکیده

Mercury is a well-known toxic metal, which induces oxidative stress. Pancreatic beta-cells are vulnerable to oxidative stress. The pathophysiological effect of mercury on the function of pancreatic beta-cells remains unclear. The present study was designed to investigate the effects of methylmercury (MeHg)-induced oxidative stress on the cell viability and function of pancreatic beta-cells. The number of viable cells was reduced 24 h after MeHg treatment in a dose-dependent manner with a range from 1 to 20 microM. 2',7'-Dichlorofluorescein fluorescence as an indicator of reactive oxygen species (ROS) formation after exposure of HIT-T15 cells or isolated mouse pancreatic islets to MeHg significantly increased ROS levels. MeHg could also suppress insulin secretion in HIT-T15 cells and isolated mouse pancreatic islets. After 24 h of exposure to MeHg, HIT-T15 cells had a significant increase in mercury levels with a dose-dependent manner. Moreover, MeHg displayed several features of cell apoptosis including an increase of the sub-G1 population and annexin-V binding. Treatment of HIT-T15 cells with MeHg resulted in disruption of the mitochondrial membrane potential and release of cytochrome c from the mitochondria to the cytosol and activation of caspase-3. Antioxidant N-acetylcysteine effectively reversed the MeHg-induced cellular responses. Altogether, our data clearly indicate that MeHg-induced oxidative stress causes pancreatic beta-cell apoptosis and dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of phosphoinositide 3-kinase/Akt signaling in low-dose mercury-induced mouse pancreatic beta-cell dysfunction in vitro and in vivo.

The relationship between oxidation stress and phosphoinositide 3-kinase (PI3K) signaling in pancreatic beta-cell dysfunction remains unclear. Mercury is a well-known toxic metal that induces oxidative stress. Submicromolar-concentration HgCl(2) or methylmercury triggered reactive oxygen species (ROS) production and decreased insulin secretion in beta-cell-derived HIT-T15 cells and isolated mous...

متن کامل

The role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells

Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...

متن کامل

Quantitative Assessment of Proliferative Effects of Oral Vanadium on Pancreatic Islet Volumes and Beta Cell Numbers of Diabetic Rats

Background: Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats. Methods: Adult male Sprague-Dawley rats were made diabetic with intravenous s...

متن کامل

Dynamin-related protein 1 is implicated in endoplasmic reticulum stress-induced pancreatic β-cell apoptosis.

Pancreatic β-cell dysfunction is a critical component in the pathogenesis of diabetes. Endoplasmic reticulum (ER) stress is one of the factors that induces pancreatic β-cell dysfunction, but the underlying mechanisms have not been well elucidated. In this study, we report that a mitochondrial fission modulator, dynamin-related protein 1 (DRP-1), plays an important role in ER stress-induced β-ce...

متن کامل

Effect of progressive aerobic training, injection of adipose tissue-derived stem cells, and their combination on Bax and Bcl-2 levels of beta - pancreatic cells in diabetic rats

Introduction: Apoptosis is protective cellular process the plays an important role in the development and homeostasis of natural tissue as well as disease-causing factors. Current study was accomplished in order to determine the effect of progressive aerobic training with injection of adipose tissue-derived stem cells Bax (as an apoptotic protein) and Bcl-2 (as an anti-apoptotic protein) and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical research in toxicology

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2006